C207 problem set 2 Solutions

1 Limb Darkening and Exoplanet Transits

(this solution from Jennifer Barnes and Michelle Galloway).
We study limb darkening by solving the radiation transport equation in plane parallel coordinates,

assuming gray opacity:
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We take as an ansatz that the angular dependence takes the form

= I(72, 1) — (72, ). (1)

I(7z, p) = Io(72) + L(72)p, (2)

where
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b  Mean intensity, flux, energy density, and radiation pres-
sure

b.1 Mean intensity
In our coordinate system,
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Evaluating the expression gives
J = Io (Tz).

b.2 Flux
F = }{Icos(ﬁ)dQ
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b.3 Energy density
u(r:) = 4%‘](7—2) = Ao ()
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b.4 Radiation pressure
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The ratio of radiation pressure to energy density is 1:3, the same as for isotropic radiation.

c Integrating the zeroth moment of the radiation transport
equation

The zeroth moment is simply Eq. (1) with I(7,) taking the form given in Eq. (2). This is integrated
over all solid angles:
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We carry out the integration, making the assumption that S # S(u), and find that
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since F' = 0Tcsy # F(7.). From earlier, we have the result that J = Iy(7;), so we can rewrite Eq.

(3):
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But
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d Integrating the first moment of the radiation transport
equation

Multiplying the zeroth moment by p and integrating over solid angles gives:
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which simplifies nicely:
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From a), we know that I} = %F = %UTéff. Plugging this in yields:
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where C' is an integration constant. We can now write out an expression for the specific intensity
up to a constant of integration:

e
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Determining the integration constant

Apply the approximation Fjyard|r.—o = 0. This gives:
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We now have a full expression for the specific intensity:
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I(r,,p) = EO’T:ff <7’Z +p+ 3) .

Plotted in Figure 1 is the emergent intensity:
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The atmosphere does appear to be radiative.

f Expression for the transit light curve

f1

1.
2.

f.2

Approximations
We assume R, << R,

Because the orbital radius is so much greater than the star, we approximate the planet’s

trajectory to be linear (i.e. % sin(f), and not %0 is constant, where # measures the angle
between the observer’s line of sight and the line from the stellar center to the planet.) See

Figure 1.

Because the observer is so far from the star/planet system, we take popserver = cos(6). In other
words, we take the angular variation over the surface of the star, relative to the observer, to
be negligible. (See Figure 2.)

Flux due to the star

We calculate the total flux from the star without interference from the planet. Keeping in mind
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Figure 2: Diagram for the the transit light curve
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Figure 3: Diagram for calculating the flux of the star



Approximation 3, we write:

Fy
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= 27T/I(,u) cos(a) d(cos(w)).

Some basic geometry allows us to rewrite the integral:
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We also rewrite our expression for intensity:
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where A is a known constant (see Part d.) We are finally ready to calculate flux!
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f.3 The flux blocked by the planet

It’s an analogous setup, but we ignore the variation in I over the planet’s surface.
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f.4 Relative flux, as a function of time

The relative flux is given by:
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To convert to a function of time, we express impact parameter p as a function of ¢ and the transit

time T
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To plot this, we take T' = .12 days, and %‘: ~ R’Ei‘g“’" ~ .1. The plot looks reasonable, given our

simplifications.

g The sun’s red edge

We make the additional assumption that the atmosphere everywhere is in local thermal equilibrium,
so S(7) = B(7). The radiation transport equation for LTE is:

or
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I - B(T).

Plugging in our expressions for I and B(T) gives:

3 1\*
T(Tz) = Teff (47-2 + 2) .

We assume that we "see” the temperature at a line of sight optical depth 7 = % At the center of
the sun, u = 1. The line of sight is radially inward, so 7, =7 = %

2
— T (3) ZTeff x 1 = 5800 K.



At the edge of the sun, u = 0. We take 7, ~ 0, so

1
1 1
T(0) = Tosy <2> ~ 4880 K,

which is almost 1000 K cooler, thus explaining why the the edge of the sun appears redder.

h Dusty Tori

h.1 Optically Thin limit

(this solution by Sedona Price and Isaac Shivvers)
a) The luminosity of a blackbody sphere is simply

Lyy = 47R%00, T2

(4)

Assuming the luminosity is equal to the eddington luminosity of the given mass, and solving for T

gives,
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Using Wien’s law AT = 0.3 cm K, we find the accreting black hole radiates most at about

Aok & 142 A (EUV)

Now we want to write down the mean intensity J(r) for all » > R;, and use this to solve for the
temperature profile 7'(r), assuming the envelope is in radiative equilibrium.

1
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In this case, I is only non-zero for solid angles looking at the BH radiative surface.

As in lecture on 19 Jan, for the Lambert sphere case (ie our isotropically emitting sphere), we have
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where Iy = B(T) = ospT2/7, so we get
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Now if our dusty envelope is in radiative equilibrium, then HA, = Cv~ Here, we’re assuming the extinction
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s
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is grey (and purely absorptive). Grey « implies that Tequi = [



So T(r) = [USLB ( R
T(r) [;9’3275;7; (1 _ [1 B Rzn]1/2>11/4
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Characteristic temperature for the envelope:

)

| T(r ~ Rout/2) = 210 K

)

(¢) Check if the stationary approximation is okay.

and using Wien’s law,

For our optically thin dusty envelope,

R A R
tose A2 mIP o 0% gince Royr — Rin ~ Rout (ie tese ~ light-crossing time)
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Compare tes. to the dynamical timescale: tqy, = tyr. The free fall time (assuming Mepyeiope < MBH)
is found using

. —GMppn
r= -
r2
But we know that # ~ r/t? (to OOM), so

T - GMBH
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¢ Rout
If GMgp

S0 |tayn =tg ~ 4.5 x 10" s~ 1.4 x 10° yr

So we find that tgyn > tesc.

Now consider t.q, the time for the envelope to come into radiative equilibrium. As an estimate, use
teq ~ tcooling or theating at ~ Rout/z-

For the thermal cooling time, if we assume that the cooling process is through electron scattering, then
Ocooling = O, and if we assume that we have an isotropic, grey, ideal gas envelope, then
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teooting(Rout/2) =~ 1.47 x 10° s = 5 x 1072 yr

and we find that tcooting <& tayn. Thus it does seem safe to assume the envelope structure is fixed
over the timescale on which photons are escaping: thermal perturbations are very quickly washed out
compared to any collapse, and the photons escape long before the envelope can appreciably collapse.

Optically thick limit: 75 > 1

For the optically thick case, we need to use the diffusion approximation. We will still assume the envelope
opacity is grey and purely absorptive.

The diffusion equation in spherical coordinates is

42 C 0
L(r) = —4nr 3p 8Tu(r)

Assuming we have radiative equilibrium, we know that %(rzF ) = const, or rather that
L = 47r?F = const with radius. So we can say that L(r) = Lgy = Lgda.es everywhere.

To find the escape time t.,. for the optically thick case, we know that photon dispersion oc N2, where
N~ R/Amjp. So
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where a« = no = pk. Since 19 = pokRout = @Rout, we can write pg = 79/(kRout), S0 & = To/Rout- SO
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2
o= Rout™ 7o
esc —
c Rout
_ Rout
tesc - 70

At what value of 73 does our stationary approximation become questionable? For the stationary
approximation to be valid, tese < tayn, and we know tgy, ~ 4.5 X 10?2 s = 1.4 x 10° yr. We also
know that R,.:/c ~ 109 s, 50 tese ~ (10% s) 79. So the stationary approximation breaks down if

70 > 4.5 x 103

Now we solve the diffusion equation for our optically thick case to determine T'(r).

c 0
L(r) = Lgg = —4mr* — —u(r
(r) BH T 3kp Or (r)
Now kp = a = 79/Rout — p = 70/(Routk). Given the setup of our problem, we're assuming that p is
constant. So
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Integrate with respect to r:
310 Lpn

u(r) =

cRous 47r

(where we will specify C later with our radiative zero boundary condition).

Now we know that u(R) = 4n/cJ(r), so J(r) = ¢/(4m)u(r), and since for grey absorptivity, we have
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Boundary condition: Teqy(Rout) =0, so C = —BTOLBH/(47TCRW,52). Now we get
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But we also know that Lgy = 47rRm205 BTf, so we can rewrite this expression as

Tequil(r) = {
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(f) Plotting the temperature profiles for the optically thin and the optically thick cases give us the profiles
below, using 79 = 0.1 for the optically thin case and 7 4+ 0 = 100 for the optically thick case.

Temperature profiles of accretion 'spheres' around 107 M_B
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Because dust sublimates for 7' 2 1500 K, we find that this happens at about

Tmin,70=0.1 = 2.9 x 1017 cm = 0.10 pc

Trmin.ro=100 ~ 8.4 x 10*" cm = 0.28 pc

(g) Thinking about our dusty gas in the middle of the envelope at r = R,,:/2, we compare the ratio for the
temperatures for the optically thick and the optically thin cases.
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